Complex integer multiply-add with rotate (indexed)
Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270, of the integral numbers in each 128-bit segment of the first source vector by the specified complex number in the corresponding the second source vector segment rotated by 0, 90, 180 or 270 degrees in the direction from the positive real axis towards the positive imaginary axis, when considered in polar representation.
Then add the products to the corresponding components of the complex numbers in the addend vector. Destructively place the results in the corresponding elements of the addend vector. This instruction is unpredicated.
These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees apart.
Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the even-numbered element and the imaginary part in the odd-numbered element.
Variants: FEAT_SVE2 || FEAT_SME (FEAT_SVE2 || FEAT_SME)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | |||||||||||||||||
size | i2 | Zm | rot | Zn | Zda |
---|
CMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>], <const>
if !IsFeatureImplemented(FEAT_SVE2) && !IsFeatureImplemented(FEAT_SME) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer index = UInt(i2); constant integer n = UInt(Zn); constant integer m = UInt(Zm); constant integer da = UInt(Zda); constant integer sel_a = UInt(rot<0>); constant integer sel_b = UInt(NOT(rot<0>)); constant boolean sub_r = (rot<0> != rot<1>); constant boolean sub_i = (rot<1> == '1');
Variants: FEAT_SVE2 || FEAT_SME (FEAT_SVE2 || FEAT_SME)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | |||||||||||||||||
size | i1 | Zm | rot | Zn | Zda |
---|
CMLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>], <const>
if !IsFeatureImplemented(FEAT_SVE2) && !IsFeatureImplemented(FEAT_SME) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer index = UInt(i1); constant integer n = UInt(Zn); constant integer m = UInt(Zm); constant integer da = UInt(Zda); constant integer sel_a = UInt(rot<0>); constant integer sel_b = UInt(NOT(rot<0>)); constant boolean sub_r = (rot<0> != rot<1>); constant boolean sub_i = (rot<1> == '1');
CheckSVEEnabled(); constant integer VL = CurrentVL; constant integer pairs = VL DIV (2 * esize); constant integer pairspersegment = 128 DIV (2 * esize); constant bits(VL) operand1 = Z[n, VL]; constant bits(VL) operand2 = Z[m, VL]; constant bits(VL) operand3 = Z[da, VL]; bits(VL) result; for p = 0 to pairs-1 constant integer segmentbase = p - (p MOD pairspersegment); constant integer s = segmentbase + index; constant integer elt1_a = SInt(Elem[operand1, 2 * p + sel_a, esize]); constant integer elt2_a = SInt(Elem[operand2, 2 * s + sel_a, esize]); constant integer elt2_b = SInt(Elem[operand2, 2 * s + sel_b, esize]); constant bits(esize) elt3_r = Elem[operand3, 2 * p + 0, esize]; constant bits(esize) elt3_i = Elem[operand3, 2 * p + 1, esize]; constant integer product_r = elt1_a * elt2_a; constant integer product_i = elt1_a * elt2_b; if sub_r then Elem[result, 2 * p + 0, esize] = elt3_r - product_r; else Elem[result, 2 * p + 0, esize] = elt3_r + product_r; if sub_i then Elem[result, 2 * p + 1, esize] = elt3_i - product_i; else Elem[result, 2 * p + 1, esize] = elt3_i + product_i; Z[da, VL] = result;
If PSTATE.DIT is 1: