FCMLA

Floating-point complex multiply accumulate

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with the more significant element holding the imaginary part of the number and the less significant element holding the real part of the number. Each element holds a floating-point value. It performs the following computation on the corresponding complex number element pairs from the two source registers and the destination register:

  • Considering the complex number from the second source register on an Argand diagram, the number is rotated counterclockwise by 0, 90, 180, or 270 degrees.
  • The two elements of the transformed complex number are multiplied by:
  • The complex number resulting from that multiplication is added to the complex number from the destination register.
  • The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.

    This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps.

    Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

    Encoding: Vector

    Variants: FEAT_FCMA (ARMv8.3)

    313029282726252423222120191817161514131211109876543210
    010111001101
    QUsizeRmrotRnRd

    FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

    Decoding algorithm

    if !IsFeatureImplemented(FEAT_FCMA) then EndOfDecode(Decode_UNDEF);
    if size == '00' then EndOfDecode(Decode_UNDEF);
    if !IsFeatureImplemented(FEAT_FP16) && size == '01' then EndOfDecode(Decode_UNDEF);
    if Q == '0' && size == '11' then EndOfDecode(Decode_UNDEF);
    constant integer esize = 8 << UInt(size);
    constant integer d = UInt(Rd);
    constant integer n = UInt(Rn);
    constant integer m = UInt(Rm);
    
    constant integer datasize = 64 << UInt(Q);
    constant integer elements = datasize DIV esize;

    Operation

    CheckFPAdvSIMDEnabled64();
    constant bits(datasize) operand1 = V[n, datasize];
    constant bits(datasize) operand2 = V[m, datasize];
    constant bits(datasize) operand3 = V[d, datasize];
    bits(datasize) result;
    bits(esize) element1;
    bits(esize) element2;
    bits(esize) element3;
    bits(esize) element4;
    
    for e = 0 to (elements DIV 2)-1
        case rot of
            when '00'
                element1 = Elem[operand2, e*2, esize];
                element2 = Elem[operand1, e*2, esize];
                element3 = Elem[operand2, e*2+1, esize];
                element4 = Elem[operand1, e*2, esize];
            when '01'
                element1 = FPNeg(Elem[operand2, e*2+1, esize], FPCR);
                element2 = Elem[operand1, e*2+1, esize];
                element3 = Elem[operand2, e*2, esize];
                element4 = Elem[operand1, e*2+1, esize];
            when '10'
                element1 = FPNeg(Elem[operand2, e*2, esize], FPCR);
                element2 = Elem[operand1, e*2, esize];
                element3 = FPNeg(Elem[operand2, e*2+1, esize], FPCR);
                element4 = Elem[operand1, e*2, esize];
            when '11'
                element1 = Elem[operand2, e*2+1, esize];
                element2 = Elem[operand1, e*2+1, esize];
                element3 = FPNeg(Elem[operand2, e*2, esize], FPCR);
                element4 = Elem[operand1, e*2+1, esize];
    
        Elem[result, e*2,   esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
        Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);
    
    V[d, datasize] = result;

    Explanations

    <Vd>: Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
    <T>: <Vn>: Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
    <Vm>: Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
    <rotate>: