Multi-vector floating-point multiply-add long by vector
This instruction widens all 16-bit half-precision elements in the one, two, or four first source vectors and the second source vector to single-precision format, then multiplies the corresponding elements and destructively adds these values without intermediate rounding to the overlapping 32-bit single-precision elements of the ZA double-vector groups.
The double-vector group within all of, each half of, or each quarter of the ZA array is selected by the sum of the vector select register and offset range, modulo all, half, or quarter the number of ZA array vectors.
The vector group symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector groups respectively. The vector group symbol is preferred for disassembly, but optional in assembler source code.
This instruction follows SME ZA-targeting floating-point behaviors.
This instruction is unpredicated.
Variants: FEAT_SME2 (ARMv9.3)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | ||||||||||||||
Zm | Rv | Zn | op | S | off3 |
---|
FMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H
if !IsFeatureImplemented(FEAT_SME2) then EndOfDecode(Decode_UNDEF); constant integer v = UInt('010':Rv); constant integer n = UInt(Zn); constant integer m = UInt('0':Zm); constant integer offset = UInt(off3:'0'); constant integer nreg = 1;
Variants: FEAT_SME2 (ARMv9.3)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |||||||||||||
Zm | Rv | Zn | op | S | o2 | off2 |
---|
FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H
if !IsFeatureImplemented(FEAT_SME2) then EndOfDecode(Decode_UNDEF); constant integer v = UInt('010':Rv); constant integer n = UInt(Zn); constant integer m = UInt('0':Zm); constant integer offset = UInt(off2:'0'); constant integer nreg = 2;
Variants: FEAT_SME2 (ARMv9.3)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |||||||||||||
Zm | Rv | Zn | op | S | o2 | off2 |
---|
FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H
if !IsFeatureImplemented(FEAT_SME2) then EndOfDecode(Decode_UNDEF); constant integer v = UInt('010':Rv); constant integer n = UInt(Zn); constant integer m = UInt('0':Zm); constant integer offset = UInt(off2:'0'); constant integer nreg = 4;
CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV 32; constant integer vectors = VL DIV 8; constant integer vstride = vectors DIV nreg; constant bits(32) vbase = X[v, 32]; integer vec = (UInt(vbase) + offset) MOD vstride; bits(VL) result; vec = vec - (vec MOD 2); for r = 0 to nreg-1 constant bits(VL) op1 = Z[(n+r) MOD 32, VL]; constant bits(VL) op2 = Z[m, VL]; for i = 0 to 1 constant bits(VL) op3 = ZAvector[vec + i, VL]; for e = 0 to elements-1 constant bits(16) elem1 = Elem[op1, 2 * e + i, 16]; constant bits(16) elem2 = Elem[op2, 2 * e + i, 16]; constant bits(32) elem3 = Elem[op3, e, 32]; Elem[result, e, 32] = FPMulAddH_ZA(elem3, elem1, elem2, FPCR); ZAvector[vec + i, VL] = result; vec = vec + vstride;