FMULX (by element)

Floating-point multiply extended (by element)

This instruction multiplies the floating-point values in the vector elements in the first source SIMD&FP register by the specified floating-point value in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Encoding: Scalar, half-precision

Variants: FEAT_AdvSIMD && FEAT_FP16 (FEAT_AdvSIMD && FEAT_FP16)

313029282726252423222120191817161514131211109876543210
011111110010010
UsizeLMRmopcodeHRnRd

FMULX <Hd>, <Hn>, <Vm>.H[<index>]

Decoding algorithm

if !IsFeatureImplemented(FEAT_AdvSIMD) || !IsFeatureImplemented(FEAT_FP16) then
    EndOfDecode(Decode_UNDEF);

constant integer idxdsize = 64 << UInt(H);
constant integer d = UInt(Rd);
constant integer n = UInt(Rn);
constant integer m = UInt(Rm);
constant integer index = UInt(H:L:M);

constant integer esize = 16;
constant integer datasize = esize;

constant integer elements = 1;

Encoding: Scalar, single-precision and double-precision

Variants: FEAT_AdvSIMD (ARMv8.0)

313029282726252423222120191817161514131211109876543210
01111111110010
UszLMRmopcodeHRnRd

FMULX <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decoding algorithm

if !IsFeatureImplemented(FEAT_AdvSIMD) then EndOfDecode(Decode_UNDEF);
constant integer idxdsize = 64 << UInt(H);
integer index;
constant bit Rmhi = M;
case sz:L of
    when '0x' index = UInt(H:L);
    when '10' index = UInt(H);
    when '11' EndOfDecode(Decode_UNDEF);

constant integer d = UInt(Rd);
constant integer n = UInt(Rn);
constant integer m = UInt(Rmhi:Rm);

constant integer esize = 32 << UInt(sz);
constant integer datasize = esize;
constant integer elements = 1;

Encoding: Vector, half-precision

Variants: FEAT_AdvSIMD && FEAT_FP16 (FEAT_AdvSIMD && FEAT_FP16)

313029282726252423222120191817161514131211109876543210
01011110010010
QUsizeLMRmopcodeHRnRd

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decoding algorithm

if !IsFeatureImplemented(FEAT_AdvSIMD) || !IsFeatureImplemented(FEAT_FP16) then
    EndOfDecode(Decode_UNDEF);

constant integer idxdsize = 64 << UInt(H);
constant integer d = UInt(Rd);
constant integer n = UInt(Rn);
constant integer m = UInt(Rm);
constant integer index = UInt(H:L:M);

constant integer esize = 16;
constant integer datasize = 64 << UInt(Q);
constant integer elements = datasize DIV esize;

Encoding: Vector, single-precision and double-precision

Variants: FEAT_AdvSIMD (ARMv8.0)

313029282726252423222120191817161514131211109876543210
0101111110010
QUszLMRmopcodeHRnRd

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decoding algorithm

if !IsFeatureImplemented(FEAT_AdvSIMD) then EndOfDecode(Decode_UNDEF);
constant integer idxdsize = 64 << UInt(H);
integer index;
constant bit Rmhi = M;
case sz:L of
    when '0x' index = UInt(H:L);
    when '10' index = UInt(H);
    when '11' EndOfDecode(Decode_UNDEF);

constant integer d = UInt(Rd);
constant integer n = UInt(Rn);
constant integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then EndOfDecode(Decode_UNDEF);
constant integer esize = 32 << UInt(sz);
constant integer datasize = 64 << UInt(Q);
constant integer elements = datasize DIV esize;

Operation

CheckFPAdvSIMDEnabled64();
constant bits(datasize) operand1 = V[n, datasize];
constant bits(idxdsize) operand2 = V[m, idxdsize];
bits(esize) element1;
constant bits(esize) element2 = Elem[operand2, index, esize];

constant boolean merge = elements == 1 && IsMerging(FPCR);
bits(128) result = if merge then V[n, 128] else Zeros(128);

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    Elem[result, e, esize] = FPMulX(element1, element2, FPCR);

V[d, 128] = result;

Explanations

<Hd>: Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn>: Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>: For the "Scalar, half-precision" and "Vector, half-precision" variants: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.
<Vm>: For the "Scalar, single-precision and double-precision" and "Vector, single-precision and double-precision" variants: is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
<index>: For the "Scalar, half-precision" and "Vector, half-precision" variants: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.
<index>: <V>: <d>: Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n>: Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<Ts>: <Vd>: Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T>: <T>: <Vn>: Is the name of the first SIMD&FP source register, encoded in the "Rn" field.