Floating-point reciprocal step (unpredicated)
Multiply corresponding floating-point elements of the first and second source vectors, subtract the products from 2.0 without intermediate rounding and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.
This instruction can be used to perform a single Newton-Raphson iteration for calculating the reciprocal of a vector of floating-point values.
Variants: FEAT_SVE || FEAT_SME (FEAT_SVE || FEAT_SME)
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | |||||||||||||||||
size | Zm | opc | Zn | Zd |
---|
FRECPS <Zd>.<T>, <Zn>.<T>, <Zm>.<T>
if !IsFeatureImplemented(FEAT_SVE) && !IsFeatureImplemented(FEAT_SME) then EndOfDecode(Decode_UNDEF); if size == '00' then EndOfDecode(Decode_UNDEF); constant integer esize = 8 << UInt(size); constant integer n = UInt(Zn); constant integer m = UInt(Zm); constant integer d = UInt(Zd);
CheckSVEEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV esize; constant bits(VL) operand1 = Z[n, VL]; constant bits(VL) operand2 = Z[m, VL]; bits(VL) result; for e = 0 to elements-1 constant bits(esize) element1 = Elem[operand1, e, esize]; constant bits(esize) element2 = Elem[operand2, e, esize]; Elem[result, e, esize] = FPRecipStepFused(element1, element2, FPCR); Z[d, VL] = result;